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Partial Variational Principle fc)r
Electromagnetic Field Problems:

Theory and Applications

SHYH-JONG CHUNG AND CHUN HSIUNG CHEN

.4Mract — A partial variation concept is proposed to clarify and extend

the idem and techniques used in variational electromagnetic (VE~ and

variational reaction theory (VRT) of recent papers. Based on this concept,

a partial variational principle (PVP) is established for handling a generaI

linear time-harmonic interior and\or exterior electromagnetic field prob-

lem. This principfe is then applied to attack the problem of waves incident

on a dielectric discontinuity in a parallel-plate guide. Also included are

numerical results and discussions about such waveguide discontinuity

problems for illustrating the use of the proposed technique.

I. INTRODUCTION

ARIATIONAL TECHNIQUES have been appliedv extensively and successfully in establishing stationary

formulas for some physical quantities, e.g., resonant fre-

quencies, cutoff frequencies, antenna impedances, and

scattering cross sections [1]. Due to its effectiveness in

handling problems with curved boundaries andlor with

inhomogeneous and anisotropic materials, the variational

formulation coupled with the finite element method has

become a standard technique in studying many interior

electromagnetic field problems [2]-[9].

Recent “efforts by several investigators also extend the

scope of variational techniques to the regime” of more

difficult exterior problems, such as radiation, scattering,

and dielectric waveguide problems, where the radiation

and continuity conditions should be properly incorporated

[10] -[19]. Silvester and Hsieh [10] divided the entire region

into interior and exterior ones, and appli~d Green’s theo-

rem to obtain a variational equation by treating the exte-

rior region as an exterior element. McDonald and Wexler

[11], on the. other hand, used an integral equation as a

constraint cm the variational equation to replace the exte-

rior element. Mei proposed the unimoment method [12], in

which he imposed an artificial boundary and expressed

the exterior and interior fields as sums of eigenmcrdes and

pseudomodes, respectively. The coefficients of both series

were then obtained by matching the continuity conditions

on the artificial boundary. Jeng and Chen [15], [16] tried to

properly handle the radiation and continuity conditions by
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imposing suitable constraints on the fundamental varia-

tional principle (FVP) derived in the variational electro-

magnetic (VEM). Having primarily based their works on

the induction theorem, reciprocity theorem, and reaction

concept, Jeng and Chen’s theory may need some simplifi-

cation. Recently, Wu and Chen [17] developed a simpler

variational reaction theory (VRT), which only makes use

of the concepts of reaction and test fields. They then

applied it to the exterior problems of dielectric waveguides

and scattering [17], [18]. In VR’T, the radiation and con-

tinuity conditions were also properly absorbed into the

variational formulation by enforcing suitable constraints

on the trial sources.

In the work on VRT, the notion of partial variation has

actually been included implicitly in the formulation and

the solution of the variational equation. Although the

partial variation concept was later suggested in a paper by

Jeng et al. [19], its use in applied problems still needs a

thorough and systematic investigation. This paper tries to

combine the idea of partial variation and those of VEM

and VRT, with some extension, so that a “partial varia-

tional principle” may be established for dealing with a

general linear electromagnetic field problem. In this study,

this principle will be applied to attack the dielectric dis-

continuity y problem in a parallel-plate conducting wave-

guide, with several numerical re~ults included for demon-

strating the use of the principle.

II. PARTIAL VARIATIONAL PRINCIPLE

The concepts of variation and partial variation in this

paper are ve~ similar to those of differentiation and

partial differentiation in calculus. The major difference is

that the differentiation is operated on a function and with

respect to some variables, “while the variation is operated

on a functional (a function of function) and with respect to

the so-called trial fields. In calculus, if g is a function of x

and y, then its partial differentiation with respect to x is

defined as the operation on g by fixing y. Similarly, in our

subsequent discussion, the designated functional I is a

functional of trial fields ~ and f a.The partial variation of
I with respect to f a is thus defined a~ the operation on I

by fixing f: _
Let SO(E, ~; SO;fo) be a time-harmonic linear electro-

magnetic field problem (called the original system) to be
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(J) (b)

Fig. 1 (jcomctry of clectrorhagnetlc field probjem: (a) Original system
.$)( ~, jj: S(,.~,). (b) AdJoint system ~~(iT, iiT: s;; j:).

solved (Fig. l(a)). For a solution of SO by the variational

formulation, we have to ~ntroduce a trial system (the

original trial ~ystem), S( i, ~;s; ~). Besides, the adjoint

system S:( ~~, ji~; s:; ~~) (Fig. l(b)) of the original one SO

and_ i~s trial system (the adjoint trial system)

S“(r, jiT; s:; f“) are sometimes, needed. Here, the super-

script T in CT and ~ means the transpose of the permittiv-

ity tensor ~ and the permeability tensor ji. The source s;

includes the volume sources ~~ (electric), ~~ (magnetic)

as well as the surface sources ~~ (elect&c), ~~ (magnetic)

over some surface I?a. The symbol ~~ represents the fields

~~, ~~. The superscript a is a to denote the one for the

adjoint and its trial systems; the absence of a superscript

denotes the one for the original and its trial systems. The

subscript ~ is O to denote the true one; the absence of a

subscript denotes the trial one.

The reaction concept [1], [20] is useful in relating two

systems. Let SI(S2) be the sources of the_ fi~st (yco~d)

system, which include th~ vo~ume_sogces Jl( J2), MI( J4Z)

and the surface sources KI( K2 ), Nl( N2). Let ~1( f2) be the

fields of the first (second) system, which denote the electric

field ~1( ~2 ) and the magnetic field fil( ~2 ). The reaction

of these two systems may be defined as (referring to Fig.

1):

(’,1.f?) = <f21~l)

Here the volume integral is extended over the whole in-

finite space fl~, and the surface integral is over the surface

~,, where the surface sources exist. The superscripts p, q

associated with r<, may be + or –, with + denoting the

outer side and — the inner side of the boundary I’a.

Essentially, (p, q) may be any one of the four combina-

tions (+,+), (–,–), (+,–), (–,+). However to pre-

serve the reciprocity theorem (that is, (f2\s1)= (fll.s2)),
the signs of p, q in (f21sl)and (f11s2)should be properly

chosen. If (p, q) in (f21s1)is (+,+), (–,–), (+,–), or

( --- +), then that of (fll~z) shouldbechosenas(–, – ),
(+, +), (+, –), or (–, +), respectively. In addition, if

(–. – ) or ( +, + ) has been chosen, at least one of the trial
surface sources ~ (or ~“) and ~ (or ~) should be

constrained to equal the true one.

In this study, the partial and total variational operators
8,8”, and 8‘ are defined as

8 = the partial variational operator which operates only

on the original trial system S(s; f ),
8<’= the partial variational operator which operates only

on the adjoint trial system S“(,s”; f“);
8’= 8+8”

= the total variational operator which operates on

both the original trial system S(s; f ) and the ad-

joint trial system S“(s”; f“).

With these definitions, one immediately has the following

equations:

~“f =f)

Sf” = o

i3y=i3f+&f=sf

f3y”=i3f” +6uf”=8uf”. (2)

They will also be true with f and f a replaced bys and s a,

respectively.

We now establish three functional for the partial varia-

tional principle. By the uniqueness theorem [1], the origi-

nal trial fields f will be equal to the original true fields fO
when the trial sources s are equal to the original true

sources SO.Therefore, the reaction of arbitrary adjoint test

fields 8 “f” on the difference of the trial sources s and the

original true sources SO should vanish whenever the trial

fields f are equal to the original true fields fO [17], i.e.,

(8”f”ls -s.)= o. (3)

By noting that the operator 8a only operates on the adjoint

quantities, it can thus be taken out of the reaction symbol,

(ti”f”p - so) =tv(f”p -s.) = o. (4)

With this, one may get a partial variational equation

formulation of the original system as

variational reaction theory [17]:

(

8“1”=0

1“ = (f” Is – so).

proposed by the

(5)

in that theory, the concept of partial variation has already

been included implicitly.

Similarly, when the adjoint trial fields equal the adjoint

true fields, the reaction (s” – .s~li3f ) should be zero for

arbitrary test fields 8f. Thus one may obtain a partial

variational equation formulation of the adjoint system as

follows:

(

81=0
[=(s”–.s;lf).

(6)

The partial variational equation (5) or (6) has the solu-

tion either for the original system or for the adjoint

system. If the solutions for these two systems are required

a“t the same time, the preceding equations should be solved

simultaneously. Of course, they can also be obtained

through the application of the third variational equation

discussed below.
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The reaction of arbitrary test fields 8 ‘f a upon the source

difference s – SO, and that of arbitrary” test sources 8‘s on

the field difference f” – f~, should add to zero whenever

the original and adjoint trial systems equal their corre-

sponding original and adjoint systems, i.e.,

(aff”ls -so)+ (f” -f;p’s) = o. (7)

By noting that

(8y”ls -.s.) = C2’(f”ls- So)- (f”p’,s} (8)

One may cast (7) into a variational formulation as follows:

x electric

t
conductor

/

I I i 111 ! 11

i$”%kti%$’-
Z.() z=Q electric

conduct o r
(a)

{

13’I’=0

I’=(f”p) -( f”lso)-(f:ls).
(9)

J .X=dI

In general, the adjoint fields & are undetermined; thus it
(E:, H:): (E:, n:) \ (E:, H:)

~ Rot
is not convenient to solve (9) directly. But if all sources are ~Rl 111raz! II
confined in a finite region, as was achieved by the use of

the induction theorem [1], the reciprocity theorem will be
x=t*flyx=’2satisfied. Then the term ( f:ls ) in (9) may be replaced by ?

(s~l f ) so that one may obtain the fundamental variational Z.o Z.1
X.o

principle as suggested by [16]: (b)

(8’1’=0 Fig. 2. Geometry of partially dielectric-filled discontinuity problem. (a)

(lo) Original problem with TE1 mode incident. (b) Induction equivalent
I’=(f”ls) –(f”lso)–(s;lf). of (a).

This variational equation (10) certainly will give the solu-

tions to the original as well as the adjoint systems. Note

that the variational formulations, (5), (6), (9), or, (10), may

be related by noting the expressions in (2) and (7), i.e.,

8’Z’= (il”f”p –so)+ (f” – f;ps)

= ii”(f”p –s.)+ b(f” –f:p)

= 8“1” i- 81 (11)

where the preservation of the reciprocity theorem ((f” –

fSIS) = (s” – sfl f )) has been assumed. The relation be-
tween FVP and VRT is now made clear. The total varia-

tion operation on the functional Z~ in FVP can thus be

divided into two parts; one is the operation in VRT which

partially acts on the functional I“ and the other partially

operates on the functional 1.

III. DISCONTINUITY IN DIELECTRIC-FILLED

PARALLEL-PLATE GUIDE

In this section, we try to apply the partial variational

principle, together with the finite element method and

frontal solution technique, to solve the discontinuity prob-

lems due to partial dielectric filling in a parallel-plate

waveguide.

The geometry of the dielectric-filled waveguide is shown

in Fig. 2(a), where the distance between two conducting

plates is d. Here placed in region I ( – co < z < O) is a

dielectric slab of thickness 11 and refractive index rrl, and
in region II ( 1< z < cm) is another dielectric slab of thick-

ness t2and refractive index n ~. Between these two slabs is

the region 111 (O < z < f), which has a completely arbitrary

transition in shape and contains an inhomogeneous

material. Let the TE ~ mode of guide I be incident from the

left-hand side. Then some higher order modes would be

excited and reflected back to guide I, and some modes of

guide 11 would also be excit~d and propagated into the

right-hand side.

For convenience, we consider the related problem of

Fig. 2(b), where we keep the same total fields E& ~ in

regions II and III, but excite the scattered fields ~= E:— —
–~, @=H~_~ “~ m region I. Here E;, H; are the inci-

dent fields and ~0, ~0 are the surface electric and mag-

netic sources such that

After transforming the problem of Fig. 2(a) to that of

Fig. 2(b), the new problem will preserve the reciprocity

theorem. Since only the solutions of the original problem

are of interest, we start with the partial variational formu-

lation (5). From (5) and (l), one has

(14)

Here~ p, q) in (1) has been chosen as (–, +). ~0(~0) and

J2t)( NO) are the true volume (surface) electric and magnetic

sources, respectively, while ~a and ~ are the adjoint trial

fields. The relations between the trial sources ~, ~, M, ~,



IEEE TRANSACTIONS ON MICROWAVE THEOKY AND TECHNIQUES. VOL. 36, NO. 3, MARCH 19S8476

and the trial fields ~, ~ are given by

M=–VX~–jo~.~ (15)

~=v X@– ja;.E (16)

F=iix[R(r; )- F(ra-)] (17)

R=- fix[E(r; )- E(ra-)]. (18)

Here ~ = pO~, = = n2(x, z)co~. ~ is the unit dyad.

To make the functional in (14) numerically solvable, we

add the following constraints:

i) ~= ~0( = O), ~= ~0( = O) in regions I, II;

ii) M = ~0( = O) in region III.

By constraint i), the integration region of (14) is now

confined to region HI, and by ii) the magnetic field ~ in

region III can be expressed in terms of ~:

(19)

Up to this stage, the unknown variables can be divided

into three groups. The first ones are the trial fields in

region I, which must satisfy the source free condition

(according to constraint i)) and the boundary conditions

at x = O and x = d. Thus, they can be written in terms of

the left-going modes of guide I, that is,

~S(I) = ~R,E~(x).exp(j~~z)

The second ones are the trial fields in region II, which may

be expanded into the right-going modes of guide II:

~f(II) = ~~~~x(x).exp[- j~~(z-1)]

Here .Z~(2}1), ~ ~(~~) are the normalized mode functions in
guide I (II) with propagation constants /3~(~~1), and R,(~)
are the coefficients to be determined. Physically, R ~ and

~1 are the reflection and transmission coefficients of this

problem, respectively. The third ones are the trial fields in

region III, and they must satisfy the boundary conditions

at x = O and x = d and may be expanded by the local

bases of the finite element method.

Without further constraints, these three groups of trial
fields will be treated independently. The discontinuity in

the trial fields between each region is then supported by

the trial surface sources ~, ~. Thus, as the finite element

method and the frontal solution technique are used, we

may number the regions I, H and the nodes in rul and r. ~

as the last element. After the assembly and elimination

process in the frontal solution technique, the working

matrix of the front will contain the unknown coefficients

of the modes of guides I, II and the unknown nodal field

values along ral and raz only. Hence these unknown

modal coefficients and nodal field values can be directly

obtained without any back-substitution process.

In the following study, we add one more constraint:
—

iii) K = ~0, N = NO at boundary ral;

~ = ~ = O at boundary I’az.

Thus the unknown variables can further be reduced.

With this constraint in (14), ~ – ~0, ~ – ~0 on I’al and

~, Ron I’a2 become zero. The remaining volume integral,

after replacing ~, ~ by (15), (16) and using integration by

parts, becomes a volume integral of the fields in region III

plus a boundary integral of the fields just inside the

boundary 17a. With the same constraint, ~(l’a- ) in this

boundary integration must be expressed by ~(r~ ). By

imposing all the constraints,

J[dE: dEy (3E; i3Ey
p=L _ _ _

1
— – kin 2E,fEy dv

WO III ax “ dx + dz “ 8Z

-~ ~;(o+)[~x(o-)+~;.y(o)ldx
.1

1-where k. = u p OCo, and H& is the x component of the

incident magnetic field. Note that, by constraint iii) and

the orthogonal properties of the modes in guides I and II,

H,(O - ) and HY(l+ ) (which are expanded in terms of

modes of guides I and II) can be related to E, (O+ ) and

EY(l- ) (which are expressed in terms of nodal fields along

boundaries ral and raz ), respectively.

With (5) and (22), and employing the finite element

method coupled with the frontal solution technique, we

may obtain the fields on the boundaries I’al and 17tiz.Then

by constraint iii), the modal coefficients can be solved

immediately.

IV. FINITE ELEMENT METHOD AND NUMERICAL

RESULTS

The partial variational equation (22) will be solved by

the finite element method [21] together with the frontal

solution technique [22]. In this study, the second-order

triangular elements, each with six nodes (as shown in Fig.

3(a)), will be used. The shape functions NI to N6 are given

by

N1 = -L,(2L1 –1) Nz = L2(21,Z –1)

N3 = ~~(?l,q –1) Nd - 4L1L2

N5 = 4L2L3 N6 = 4Lj Ll (23)

where L ~, L2, L3 are the area coordinates. The relation

between the area coordinates and Cartesian coordinates is

given by

[!=[ : %1

where (x,, Z,’) are the Cartesian coordinates of the j th

vertex of the triangle (j =1,2, 3).
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(b)

Fig. 3. (a) Second-order triangular element. (b) Typical mesh division
for tapered-t ype dielectric discontinuity in parallel-plate guide. The
fields in guide I and guide H are expanded by M and N local modes,
rcspcctlvcly.

Typical meshes for a tapered discontinuity problem are

shown in Fig. 3(b). There are MX intervals along the x axis

and M, intervals along the z axis. The fields in the left-

and right-hand sides of the finite element region are ex-

panded into &f and N local waveguide modes, respec-

tively. When dealing with the frontal solution technique,

the sequence in numbering the elements should be along

the direction of the z axis in order to minimize the

dimension of the working matrix. Another point worthy of

notice is that the boundaries ral and raz should not be

chosen to cross the points PI and p2 of Fig. 3(b). By this

choice, it is thus possible to divide the meshes even when

the tapered angle is almost (but not exact) 90°. Besides,

since the matching boundaries ( r.l and ruz ) are away

from the discontinuity region (the region between PI and

P2), the mode number needed to express the fields in
guides I and 11 may be reduced because of the decaying

nature of the evanescent modes.

The phenomenon of the relative convergence, discussed

in other numerical works [23] –[25], is also investigated.

Fig. 4 shows the field distribution 13Y(z = 0- ) for a step

dielectric discontinuity in a parallel-plate guide. Here, we

use kfX =10, M= = 2, and N =10 (it is sufficient to expand

the fields in guide II). There are 19 ( = 2i14X + 1 – 2) free

nodes in the x direction. When the mode number M varies

from 10 to 16, the fields all behave the same and are

proved to be the same as those at the immediate right-hand

side of the junction. But as M is further increased, the

coefficients of the higher order modes will be larger than

the actual values. Consequently, the error reflected by the

rapid variation would appear. This unwanted phenomenon

may be explained as follows: As the mode number in-

creases, the field distributions of the higher order modes

o.PM=lo-16-

M=17

0,0 05 10

xld

Fig. 4 Electric field distributions at the left-hand side of thejunctlon to
show relatlvc convergence phenomena A4, = 10, M, = 2, N = 10.

-T” “’’” d=(+@. -

Z 0,4 -d-’’\\L
u J TE1,,,,~YJi&+ n=16
.-
.-
~ 0.3 “
ov

E 0.2 - ##?$c/.- .

‘:WA
00 0.5 1.0

t ~/d

Fig, 5. Reflection coefficient for step-discontinuity problem —:
PVP, AA A: mode-matchmg method, and ---: MRCT.

would not be adequately represented by the boundary

fields with the small number (no w 19) of nodes. Although

the field distribution at the junction is highly dependent on

the choice of the mode number and the node number in

the transverse direction, the reflection coefficient is not

affected by that choice. One possible explanation is that

the fields of the higher order modes are integrated to zero

in calculating the reflection coefficient.

As a check of the present method, we consider the

step-type discontinuity (shown in Fig. 5) which can be

tackled by other methods. Fig. 5 shows the variation in the

reflection coefficient due to the variation in the dielectric

width of guide II. At t~/d = 0.5042, the second mode will

propagate in the partially loaded guide. It is shown that

the curve of the present method and that of the mode-

matching method match very well, and that the results of

MRCT (the modified residue-calculus technique) [23] are

almost the same as those of the above two methods except

at the near neighborhood of t~/d = 0.5042.
In Fig. 6, a straight tapered dielectric discontinuity in

the parallel-plate guide is considered. The dielectric slab in

the partially loaded guide has a thickness of 0.43 A ~ (A ~
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10
21s.{ transmitted rr+de 05

— ~

0.01 4 -J()()
0° 30° 60” 90°

e
Fig. 6 Reflection and trmrsmusion coefficients for straight tapered-dis-

continuity problem,

being the wavelength in free space), and there are two

guided modes in this guide. The three curves in the figure

show the variations of the reflection coefficient in the

dielectric-free guide (I) as well as the transmission coeffi-

cients of the first and second modes in the partially loaded

guide (II) with respect to the change in the tapered angle.

(Note that for each angle, the sum of the squares of the

corresponding three values must equal unity because the

power conservation law should be satisfied.) In the range

from 10° to 45°, the three curves vary quickly, whereas

outside this range, they change gently. It is noted that the

reflection coefficient curve reaches a maximum at the

tapered angle of 64° instead of 90°.

Fig. 7 shows the reflection coefficient and the amplitude

coefficients of the two guided modes in the right-hand-side

guide (guide II) as a function of t2/d with various tapered

angles as parameters. In Fig. 7(b), we show cmly the results

for t~/d> 0.5042. For t2/d smaller than that value, the

coefficients are zero for the second guided mode and are

almost unity for the first mode of guide II. In the neigh-

borhood of t2/d = 0.5042, the curves for reflection coeffi-

cients do not behave regularly. For example, in some range

the curve for 6 = 60° is higher than the others, and in

another range that for 6 = 750 surpasses it. Outside of this

range, however, the steeper the discontinuity, the more the

power will be reflected back, no matter how great t2/d is.

Also, we note that the curve for the coefficilmt of the first

(second) mode is first lowered (raised) and then raised

(lowered) as the tapered angle is increased.

V. CONCLUSIONS

The partial variation operator has been defined to

establish a partial variational principle (PVP) for electro-

magnetic field problems. The problem of discontinuities in

partially dielectric-filled waveguides has been tackled as an

application of this PVP.

In this paper. the definition of reactions has been en-

larged so that the variational equations in PVP can be used

with more flexibility. With the choice for (p, q ) in the

definition of reaction as (+, – ) or (–, +), the continuity

tz/d

(a)

‘a

E
1%.-
Uo.-

ty/d

(b)

Fig. 7 Rcflectlon and transmission coefficients for straight tapered-dis-
continuity problem with tapered angles as parameters.

conditions at each boundary need not be enforced. This

flexibility may be useful in many electromagnetic problems

such as the slab waveguide discontinuity y problems and the

open-type waveguide problems. Such problems are under

investigation and will appear in the near future.
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