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Partial Variational Principle for
Electromagnetic Field Problems:
Theory and Applications

SHYH-JONG CHUNG AnD CHUN HSIUNG CHEN

Abstract — A partial variation concept is proposed to clarify and extend
the ideas and techniques used in variational electromagnetics (VEM) and
variational reaction theory (VRT) of recent papers. Based on this concept,
a partial variational principle (PVP) is established for handling a general
linear time-harmonic interior and/or exterior electromagnetic field prob-
lem. This principle is then applied to attack the problem of waves incident
on a dielectric discontinuity in a parallel-plate guide. Also included are
numerical results and discussions about such waveguide discontinuity
problems for illustrating the use of the proposed technique.

I. INTRODUCTION

ARIATIONAL TECHNIQUES have been applied
Vextensively and successfully in establishing stationary
formulas for some physical quantities, ¢.g., resonant fre-
quencies, cutoff frequencies, antenna impedances, and
scattering cross sections [1]. Due to its effectiveness in
handling problems with curved boundaries and/or with
inhomogeneous and anisotropic materials, the variational
formulation coupled with the finite element method has
become a standard technique in studying many interior
electromagnetic field problems [2]-[9].

Recent efforts by several investigators also extend the
scope of variational techniques to the regime of more
difficult exterior problems, such as radiation, scattering,
and dielectric waveguide problems, where the radiation
and continuity conditions should be properly incorporated
[10]-{19]. Silvester and Hsieh [10] divided the entire region
into interior and exterior ones, and applied Green’s theo-
rem to obtain a variational equation by treating the exte-
rior region as an exterior element. McDonald and Wexler
{11], on the other hand, used an integral equation as a
constraint on the variational equation to replace the exte-
rior element. Mei proposed the unimoment method [12], in
which he imposed an artificial boundary and expressed
the exterior and interior fields as sums of eigenmodes and
pseudomodes, respectively. The coefficients of both series
were then obtained by matching the continuity conditions
on the artificial boundary. Jeng and Chen [15], [16] tried to
properly handle the radiation and continuity conditions by
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imposing suitable constraints on the fundamental varia-
tional principle (FVP) derived in the variational electro-
magnetics (VEM). Having primarily based their works on
the induction theorem, reciprocity theorem, and reaction
concept, Jeng and Chen’s theory may need some simplifi-
cation. Recently, Wu and Chen [17] developed a simpler
variational reaction theory (VRT), which only makes use
of the concepts of reaction and test fields. They then
applied it to the exterior problems of dielectric waveguides
and scattering [17], [18]. In VRT, the radiation and con-
tinuity conditions were also properly absorbed into the
variational formulation by enforcing suitable constraints
on the trial sources.

In the work on VRT, the notion of partial variation has
actually been included implicitly in the formulation and
the solution of the variational equation. Although the
partjal variation concept was later suggested in a paper by
Jeng et al. [19], its use in applied problems still needs a
thorough and systematic investigation. This paper tries to
combine the idea of partial variation and those of VEM
and VRT, with some extension, so that a “partial varia-
tional principle” may be established for dealing with a
general linear electromagnetic field problem. In this study,
this principle will be applied to attack the dielectric dis-
continuity problem in a parallel-plate conducting wave-
guide, with several numerical results included for demon-
strating the use of the principle.

II. PARTIAL VARIATIONAL PRINCIPLE

The concepts of variation and partial variation in this
paper are very similar to those of differentiation and
partial differentiation in calculus. The major difference is
that the differentiation is operated on a function and with
respect to some variables, while the variation is operated
on a functional (a function of function) and with respect to
the so-called trial fields. In calculus, if g is a function of x
and y, then its partial differentiation with respect to x is
defined as the operation on g by fixing y. Similarly, in our
subsequent discussion, the designated functional I is a
functional of trial fields f and f“ The partial variation of
I with respect to f* is thus defined as the operation on J
by fixing f.

Let Sy(€, i; so; fo) be a time-harmonic linear electro-
magnetic field problem (called the original system) to be
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Fig. 1 Geometry of clectromagnetic field problem. (a) Original system

Sot € 1: 5. fo)- (b) Adjoint system S¢'(€7, 575 5§ f¢)-

solved (Fig. 1(a)). For a solution of S, by the variational
formulation, we have to 1ntroduce a trial system (the
original trial system) S(e B; s; f). Besides, the adjoint
system S, ”(e L1758 f#) (Fig. 1(b)) of the original one S,
and its trial system (the adjoint trial system)
Sl BTy 5% f are sometimes. needed. Here, the super-
script 7' in e: T and p” means the transpose of the permittiv-
ity tensor € and the permeab111ty tensor . The source sg
includes the volume sources Jﬁ (electrlc) Mﬁ (magnetic)
as well as the surface sources Kg (electnc) N ¢ (magnetic)
over some surface T',. The symbol fg* represents the fields
EB, Hﬂ The superscript « is a to denote the one for the
adjoint and its trial systems; the absence of a superscript
denotes the one for the original and its trial systems. The
subscript 8 is 0 to denote the true one; the absence of a
subscript denotes the trial one.

The reaction concept [1], [20] is useful in relating two
systems. Let s;(s,) be the sources of the first (second)
system, which include the volume sources J,(J,), M;(M,)
and the surface sources K;(K,), Ny(N,). Let f,(f,) be the
fields of the first (second) system, which denote the electric
field E,(E,) and the magnetic field H,(H,). The reaction
of these two systems may be defined as (referring to Fig.
1):

(silfa) = (hlsy)

+f [Ez(Ff)-El—ﬁz(F‘f’)-ﬁl]ds. (1)
L,

Here the volume integral is extended over the whole in-
finite space _, and the surface integral is over the surface
[, where the surface sources exist. The superscripts p, g
associated with I', may be + or —, with + denoting the
outer side and — the inner side of the boundary T,.
Essentially, ( p, g) may be any one of the four combina-
tions (+.,+), (—, =), (+,~), (—, +). However to pre-
serve the reciprocity theorem (that is, {f,ls;> = (fils,)),
the signs of p.q in {f,|s,) and {f||s,) should be properly
chosen. If (p,q) in {(fi]sd is (+,+), (=, =), (+,—), or
{—. +). then that of {f)|s,) should be chosen as (—, —),
(+.+) (+,—), or (—,+), respectively. In addition, if
(—.—)or(+, +) has been chosen, at least one of the trial
surface sources K (or K¢) and N (or N“) should be
constrained to equal the true one.
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In this study, the partial and total variational operators
5,8¢, and 8 are defined as

8 = the partial variational operator which operates only
on the original trial system S(s; f),

8¢ = the partial variational operator which operates only

on the adjoint trial system S“(s f“);

8+ 8¢

the total variational operator which operates on

both the original trial system S(s; f) and the ad-

joint trial system S“(s¢; f“).

With these definitions, one immediately has the following
equations:

>
|

0 =0
8f4=0
O'f =8f + 8% =d8f
8« =8f“+ 8 =8f*. (2)
They will also be true with f and f“ replaced by s and s,
respectively.

We now establish three functionals for the partial varia-
tional principle. By the uniqueness theorem [1], the origi-
nal trial fields f will be equal to the original true fields f
when the trial sources s are equal to the original true
sources s,. Therefore, the reaction of arbitrary adjoint test
fields 8f“ on the difference of the trial sources s and the
original true sources s, should vanish whenever the trial
fields f are equal to the original true fields f, [17], i.e.,

(8% “ls =50) =0. (3)

By noting that the operator 8¢ only operates on the adjoint
quantities, it can thus be taken out of the reaction symbol,

(8°f s —s50) =84 fs —50) =0. 4)

With this, one may get a partial variational equation

formulation of the original system as proposed by the

variational reaction theory [17]:
8414=0

a a 5

e s ©)

In that theory, the concept of partial variation has already
been included implicitly.

Similarly, when the adjoint trial fields equal the adjoint
true fields, the reaction {(s“—s5§|6f) should be zero for
arbitrary test fields 8f. Thus one may obtain a partial
variational equation formulation of the adjoint system as
follows:

8I=0
{ I= (s 587>, (6)

The partial variational equation (5) or (6) has the solu-
tion either for the original system or for the adjoint
system. If the solutions for these two systems are required
at the same time, the preceding equations should be solved
simultaneously. Of course, they can also be obtained
through the application of the third variational equation
discussed below.
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The reaction of arbitrary test fields 'f¢ upon the source
difference s — 54, and that of arbitrary test sources &8s on
the field difference f“ - f¢, should add to zero whenever
the original and adjoint trial systems equal their corre-
sponding original and adjoint systems, i.e.,

(8F“ls = 5oy +(/* ~ f§18's) =0.
By noting that

(8 “ls —s0) = 8K [ ls = 50) —(f*I8's) (8)

One may cast (7) into a variational formulation as follows:

81'=0
{ It=<f7a|3>_<fa|so>—<f0a|s>- ©)

In general, the adjoint fields f§ are undetermined; thus it
is not convenient to solve (9) directly. But if all sources are
confined in a finite region, as was achieved by the use of
the induction theorem [1], the reciprocity theorem will be
satisfied. Then the term (fg'|s) in (9) may be replaced by
{s§|f) so that one may obtain the fundamental variational
principle as suggested by [16]:

8T =0
y ‘ ‘ (10)
{ I'=(fs) = {f“Iso> = {581/ )-
This variational equation (10) certainly will give the solu-
tions to the original as well as the adjoint systems. Note
that the variational formulations, (5), (6), (9), or, (10), may
be related by noting the expressions in (2) and (7), i.e.,

8" = (8f|s — o) +{f* — fds)
=8 [ s =50y + 8(f* = fils)
= 8974 + 81 " (11)

where the preservation of the reciprocity theorem ({f¢ —
f3s)> = (s“—s§]f)) has been assumed. The relation be-
tween FVP and VRT is now made clear. The total varia-
tion operation on the functional I’ in FVP can thus be
divided into two parts; one is the operation in VRT which
partially acts on the functional ¢ and the other partially
operates on the functional 1.

- III.  DISCONTINUITY IN DIELECTRIC-FILLED
PARALLEL-PLATE GUIDE

In thi$ section, we try to apply the partial variational
principle, together with the finite element method and
frontal solution technique, to solve the discontinuity prob-
lems due to partial dielectric filling in a parallel-plate
waveguide. ‘

The geometry of the dielectric-filled waveguide is shown
in Fig. 2(a), where the distance between two conducting
plates is d. Here placed in region I (—c0o<z<0).is a
dielectric slab of thickness ¢, and refractive index »;, and
in region II (/ <z <) is another dielectric slab of thick-
ness ¢, and refractive index n,. Between these two slabs is
the region III (0 < z < /), which has a completely arbitrary

transition in shape and contains an inhomogeneous

material. Let the TE, mode of guide I be incident from the
left-hand side. Then some higher order modes would be

(7) -

475
X electric
T conductor
(Eo,Ho) | (Eo.Ho) ! (Es, HS)
I § I i

— 7

electric
conductor

Fig. 2. Geometry of partially dielectric-filled discontinuity problem. (a)
Original problem with TE; mode incident. (b) Induction equivalent
of (a). ‘

excited and reflected back to guide I, and some modes of
guide II would also be excited and propagated into the
right-hand side.

For convenience, we consider the related problem of
Fig. 2(b), where we keep the same total fields Ej, Hj in
regions II and III, but excite the scattered fields E;=E!
— E}, Hy=H}~ H{ in region 1. Here E;, H| are the inci-
dent fields and K, N, are the surface electric and mag-
netic sources such that :

Ko(T,)=Ax [HS - HE;] Ir, = PHi,lr,

(12)
(13)

After transforming the problem of Fig. 2(a) to that of
Fig. 2(b), the new. problem will preserve the reciprocity
theorem. Since only the solutions of the original problem
are of interest, we start with the partial variational formu-
lation (5). From (5) and (1), one has

No(T,)=—Ax [E_os_Eé] v, = XAE(;yIFal‘

ref IH[Ea-(J—JO)—Ha.(M—MO)]dv
o [ (BT (R - Ko~ () (7 )] ds

+ [ [E«(T;)-K—H(Ty;)-N] ds. (14)
T2

Here (p.q) in (1) has been chosen as (—, +). ,jo(l?o) and

M (N,) are the true volume (surface) electric and magnetic

sources, respectively, while £¢ and H“ are the adjoint trial

fields. The relations between the trial sources J, K, M, N,
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and the trial fields E, H are given by

(15)
(16)
ax[H(T))-H(T, )] (17)
—ax [E(r}) - E(r)]. (18)

Here p = HoI €=n*(x, z)eOI I is the unit dyad.
To make the functional in (14) numerically solvable, we
add the following constraints:

1) J JO( =0), M = My(=0) in regions 1, II;
iiy M= M,(=0) in region IIL

]\7=—VXE—jwﬁ-ﬁ
J=v X H- ]we -E

K=
N

By constraint i), the integration region of (14) is now
confined to region III, and by ii) the magnetic field H in
region III can be expressed in terms of E:
_ -1
H=—jitv xE.
Je
Up to this stage, the unknown variables can be divided
into three groups. The first ones are the trial fields in
region I, which must satisfy the source free condition
(according to constraint i)) and the boundary conditions
at x =0 and x = d. Thus, they can be written in terms of
the left-going modes of guide I, that is,

E() = SRE(x) e 8)
SR

The second ones are the trial fields in region I, which may
be expanded into the right-going modes of guide II:

E'(I1) = ZTeII (x)-exp[— jB"(z—1)]

" H)=Z?:h?(x»exp[—jﬁ,n(z—z)l.

(19)

(1) = LR iX(x) -exp jB:). (20)

(21)

Here &l(e™), h1(h™") are the normalized mode functions in
guide I (I) with propagation constants B}( 1), and R (T))
are the coefficients to be determined. Physically, R, and
T, are the reflection and transmission coefficients of this
problem, respectively. The third ones are the trial fields in
region III, and they must satisfy the boundary conditions
at x=0 and x=4d and may be expanded by the local
bases of the finite element method.

Without further constraints, these three groups of trial
fields will be treated independently. The discontinuity in
the trial fields between each region is then supported by
the trial surface sources K, N. Thus, as the finite element
method and the frontal solution technique are used, we
may number the regions I, I and the nodes in '), and T,
as the last element. After the assembly and elimination
process in the frontal solution technique, the working
matrix of the front will contain the unknown coefficients
of the modes of guides I, I and the unknown nodal field
values along ['; and T, only. Hence these unknown
modal coefficients and nodal field values can be directly
obtained without any back-substitution process.

In the following study, we add one more constraint:

iii) Iz = Izo, N =N, at boundary T;
K = N=0 at boundary [,.

Thus the unknown variables can further be reduced.

With this constraint in (14), K — K,, N— Njyon I';; and
K, N on T, become zerc. The remaining volume integral,
after replacing J, M by (15), (16) and using integration by
parts, becomes a volume integral of the fields in region III
plus a boundary integral of the fields just inside the
boundary I',. With the same constraint, H(I', ) in this
boundary integration must be expressed by H(I, ). By
imposing all the constraints,

i [aEya e 35“ % ~kin’E°E,|d
! —-"I; a8 —8)—6_ dx T 0z dz yLy | av
= [ E2O)[1.07)+ 13, (0)] dx
— [ B )-H(1") dx (22)
Fu2 !

where k,= wypqe,, and H{, is the x component of the
incident magnetic field. Note that, by constraint iii) and
the orthogonal properties of the modes in guides I and II,
H (07) and H (/") (which are expanded in terms of
modes of guides I and II) can be related to £,(07) and
E (I7) (which are expressed in terms of nodal fields along
boundaries I'); and I'},), respectively.

With (5) and (22), and employing the finite element
method coupled with the frontal solution technique, we
may obtain the fields on the boundaries [, and I',,. Then
by constraint iii), the modal coefficients can be solved
immediately.

IV. FINITE ELEMENT METHOD AND NUMERICAL
RESULTS

The partial variational equation (22) will be solved by
the finite element method [21] together with the frontal
solution technique {22]. In this study, the second-order
triangular elements, each with six nodes (as shown in Fig.
3(a)), will be used. The shape functions N, to N, are given
by

N =L,(2L,-1)
Ny=L,(2Ly —1)
Ny=4L,L, (23)

where L, L,, L, are the area coordinates. The relation
between the area coordinates and Cartesian coordinates is
given by

N,=L,(2L,-1)
Ng=4L,L,

z
X|=1x x5, x5 L,
1

where ( X, zj) are the Cartesian coordinates of the jth
vertex of the triangle (7 =1,2,3).
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Fig. 3. (a) Sccond-order triangular element. (b) Typical mesh division
for tapered-type diclectric discontinuity in parallel-plate guide. The
ficlds m guide I and gwide II are expanded by M and N local modes,

respectively.

Typical meshes for a tapered discontinuity problem are
shown in Fig. 3(b). There are M, intervals along the x axis
and M, intervals along the z axis. The fields in the left-
and right-hand sides of the finite element region are ex-
panded into M and N local waveguide modes, respec-
tively. When dealing with the frontal solution technique,
the sequence in numbering the elements should be along
the direction of the z axis in order to minimize the
dimension of the working matrix. Another point worthy of
notice is that the boundaries I';; and I',, should not be
chosen to cross the points p; and p, of Fig. 3(b). By this
choice, it is thus possible to divide the meshes even when
the tapered angle is almost (but not exact) 90°. Besides,
since the matching boundaries (I';; and T,,) are away
from the discontinuity region (the region between p; and
p,), the mode number needed to express the fields in
guides I and II may be reduced because of the decaying
nature of the evanescent modes.

The phenomenon of the relative convergence, discussed
in other numerical works [23]-[25], is also investigated.
Fig. 4 shows the field distribution E (z=07) for a step
dielectric discontinuity in a parallel-plate guide. Here, we
use M =10, M, =2, and N =10 (it is sufficient to expand
the fields in guide II). There are 19 (=2M, +1-2) free
nodes in the x direction. When the mode number M varies
from 10 to 16, the fields all behave the same and are
proved to be the same as those at the immediate right-hand
side of the junction. But as M is further increased, the
coefficients of the higher order modes will be larger than
the actual values. Consequently, the error reflected by the
rapid variation would appear. This unwanted phenomenon
may be explained as follows: As the mode number in-
creases, the field distributions of the higher order modes
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Fig. 4  Electric ficld distributions at the left-hand side of the junction to
show relative convergence phenomena M, =10, M_ =2, N=10.

O 5 T T T T T T T 11 T
- T d=(7567 1
- avYa
g O'[’hi TE, [hnant o =16
5t L 4
% 03" ) //W 4
(o] 1 z
w F : 7 7
6 02} y 1
= W
9 - | .
ks !
@ 0.1r | T
: 3
B E ~t, /d=05042 ]
0.0 N
00 05 1.0
t,/d
Fig. 5. Reflection coefficient for step-discontinuity problem ———:
PVP, AAA: mode-matching method, and ——-: MRCT.

would not be adequately represented by the boundary
fields with the small number (now 19) of nodes. Although
the field distribution at the junction is highly dependent on
the choice of the mode number and the node number in
the transverse direction, the reflection coefficient is not
affected by that choice. One possible explanation is that
the fields of the higher order modes are integrated to zero
in calculating the reflection coefficient.

As a check of the present method, we consider the
step-type discontinuity (shown in Fig. 5) which can be
tackled by other methods. Fig. 5 shows the variation in the
reflection coefficient due to the variation in the dielectric
width of guide IL. At ¢, /d = 0.5042, the second mode will
propagate in the partially loaded guide. It is shown that
the curve of the present method and that of the mode-
matching method match very well, and that the results of
MRCT (the modified residue-calculus technique) [23] are
almost the same as those of the above two methods except
at the near neighborhood of ¢, /d = 0.5042.

In Fig. 6, a straight tapered dielectric discontinuity in
the parallel-plate guide is considered. The dielectric slab in
the partially loaded guide has a thickness of 0.43 A, (A,



478

10 —_1st transmitted m'ode_O 5
€ ggl TTE los =
o 08 d ~ T 04 S
R Y NN Y e
S 06 d=080x, 103 g
o b 1220432 10
9 =16 c
n 04f < <402 ¢
2 Reflected mode po
£ i ) P
S 02t ‘ 101 %
27 “2nd transmitted mode 2

oo 4 v . . 10 0

0° 30° 60° 90°
0
Fig. 6 Reflection and transmussion coefficients for straight tapered-dis-

contmuity problem.

being the wavelength in free space), and there are two
guided modes in this guide. The three curves in the figure
show the variations of the reflection coefficient in the
dielectric-free guide (I) as well as the transmission coeffi-
cients of the first and second modes in the partially loaded
guide (II} with respect to the change in the tapered angle.
(Note that for each angle, the sum of the squares of the
corresponding three values must equal unity because the
power conservation law should be satisfied.) In the range
from 10° to 45°, the three curves vary quickly, whereas
outside this range, they change gently. It is noted that the
reflection coefficient curve reaches a maximum at the
tapered angle of 64° instead of 90°.

Fig. 7 shows the reflection coefficient and the amplitude
coefficients of the two guided modes in the right-hand-side
guide (guide II) as a function of ¢, /d with various tapered
angles as parameters. In Fig. 7(b), we show only the results
for ¢,/d > 0.5042. For t,/d smaller than that value, the
coefficients are zero for the second guided mode and are
almost unity for the first mode of guide II. In the neigh-
borhood of ¢, /d = 0.5042, the curves for reflection coeffi-
cients do not behave regularly. For example, in some range
the curve for § =60° is higher than the others, and in
another range that for § = 75° surpasses it. Outside of this
range, however, the steeper the discontinuity, the more the
power will be reflected back, no matter how great 1, /d is.
Also, we note that the curve for the coefficient of the first
(second) mode is first lowered (raised) and then raised
(lowered) as the tapered angle is increased.

V. CONCLUSIONS

The partial variation operator has been defined to
establish a partial variational principle (PVP) for electro-
magnetic field problems. The problem of discontinuities in
partially dielectric-filled waveguides has been tackled as an
application of this PVP.

In this paper. the definition of reactions has been en-
larged so that the variational equations in PVP can be used
with more flexibility. With the choice for ( p,q) in the
definition of reaction as (+, —) or (—, +), the continuity
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Fig. 7 Reflection and transmission coefficients for straight tapered-dis-

continuity problem with tapered angles as parameters.

conditions at each boundary need not be enforced. This
flexibility may be useful in many electromagnetic problems
such as the slab waveguide discontinuity problems and the
open-type waveguide problems. Such problems are under

investigation and will appear in the near future.
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